Object-oriented C++ boundary element solution of the vector Laplace equation

نویسنده

  • J. A. Ingber
چکیده

The Boundary Element Method (BEM) lends itself well to an object-oriented implementation. Well-defined class hierarchies can reduce the size of a problem solution while improving the readability and maintainability of the solution. The BEM uses geometric elements, defined as collections of nodes, to model a surface. Boundary conditions, specified by the problem, are defined at each node. This suggests an object oriented solution that defines a base Element class that can be extended to define triangular elements and quadrilateral elements, and a base Node class that can be extended to define more specialized nodes, such as edge and corner nodes. Historically, BEM codes have been written in FORTRAN 90 and object oriented codes have been deemed too slow for such computationally intensive solutions. In this paper I will discuss the development and optimization of an object-oriented BEM code, written in C++, for solving the vector Laplace equation for the magnetic vector potential in three dimensions. The solution to the 3-D magnetic field problem was first written and tested in FORTRAN 90. Due to the complexity and size of the problem solution, the translation to C++ went through several stages. At each stage the code was tested for accuracy and speed. After optimization of the C++ code, which included optimization of memory allocation, optimization of class structures, optimization of functions required to build the discretized linear system of equations and optimization of the solver, the C++ code executed faster than the FORTRAN 90 code for all test problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Significant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind

This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...

متن کامل

Solution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method

The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...

متن کامل

Object-Oriented Computer Simulations of Physical Systems Using Dual Reciprocity Boundary Element Methodology

Models of physical systems are essential in every engineering field. This work deals with computer simulations of physical systems that can be mathematically modelled by differential equations together with sufficient boundary conditions. The computer simulations are based on object-oriented technology and the dual reciprocity boundary element method which is a universal solution scheme for var...

متن کامل

Fast Multipole Boundary Element Method of Potential Problems

In order to overcome the difficulties of low computational efficiency and high memory requirement in the conventional boundary element method for solving large-scale potential problems, a fast multipole boundary element method for the problems of Laplace equation is presented. through the multipole expansion and local expansion for the basic solution of the kernel function of the Laplace equati...

متن کامل

‎Solving Some Initial-Boundary Value Problems Including Non-classical ‎C‎ases of Heat Equation By Spectral and Countour Integral ‎Methods‎

In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010